ANALYSIS OF RELATIONSHIP BETWEEN METEOROLOGICAL CONDITIONS AND GROUND O₃ LEVELS IN SUMMER OVER THE CENTRAL KANTO AREA

The Second International Conference on COUNTERMEASURES TO URBAN HEAT ISLAND Berkeley, California Sep 21-23, 2009

M. KHIEM^a, R. OOKA^a, H. HUANG^a, Y. KAWAMOTO^a, H. YOSHIKADO^c, H. HAYAMI^b

a)The University of Tokyo, Japan
b) Saitama University, Japan
c)Central Research Institute of Electric Power Industry, Japan

- Both NO_X and NMHC have a decrease tendency. However, O concentration has not been reduced
- About 10ppb/16 years in Tokyo

Increase in number of high Ox days in summer

YoshiKado (2004)

*) High Ox day means its highest value in each sector exceeding 120 ppb\ for two consecutive hours.

What are reasons? The trans-boundary from other Asian countries, chemistry, meteorology ...

Relationship between O₃ concentration in Japan and emission of NOx and NMVOC from China (Ohara, 200

There is a possibility of trans-boundary pollution.

However, peak concentration of O_3 is observed in summer.

There is another reason except for trans-boundary pollution in summer.

Global and urban warming has been recognized resulting from rapid urbanization

Total hours exceeding 30 deg C (Annual average for each 5 years). http://www2.kankyo.metro.tokyo.jp/heat/heat1.htm(2009.6)

Change in meteorological conditions

Ooka Lab

2. Objectives

- 1. Analysis the variation of the peak O₃ and its possible relation with change in meteorological conditions based on measurements
- 2. Consider these relationships based on numerical simulation

3. Methods

■ Statistical analysis (a multiple regression analysis)

$$y = a_0 + a_1 x_1 + \dots + a_m x_m + \varepsilon$$

y: objective variable (ozone concentration)

xi: independent variables (meteorological variables)

ai: regression coefficients (estimated by least square procedure)

Numerical simulation

MM5 model (The Fifth-Generation NCAR / Penn State Mesoscale Model) Simulating meteorological variables; T, U, RH, P,.....

CMAQ model (The Community Multi-scale Air Quality modeling, EPA, USA) Simulating aerosol and gas; O3, CO, NOx, NH3, SO2,.....

3. A multiple-scale numerical model

RESULTS

4.1 Long-term variation of the peak ozone: Observation analysis

Analysis conditions

☐ Study periods:1985 ~ 2005

■ Methods:

Statistical analysis

Data: Observation

Variables	Definition		
Ozone (O ₃)	- Seasonally averaged daily maximum value of		
	environmental monitoring sites in Tokyo		
Temperature (T)			
Wind speed (U)	and averaged wind speed at Nerima meteorological site.		

4.1 Long-term variation of the peak ozone: Observation analysis

$$\frac{O_3 - \overline{O_3}}{\sigma_{O_3}} = 0.80 * \frac{T - \overline{T}}{\sigma_T} - 0.49 * \frac{U - \overline{l}}{\sigma_U}$$

$$R = 0.91, \quad R^2 = 84.1$$

R is the multiple correlation coefficient and,
R² is the fraction of the variance explained by the regression

 \square 84.1% of the variation of the peak O_3 may be accounted for by changes in temperature, and wind speed.

4.1 Long-term variation of the peak ozone: Observation analysis

Trend of O₃ concentration in Tokyo area

	Periods	Observation	Model
Averaged daily maximum	1980s	41.04	41.51
concentrations (ppb)	1990s	51.77	52.25
	2000s	61.80	60.60
Difference between	1990s-1980s	10.73	10.74
periods (ppb)	2000s-1990s	10.03	8.35

■ Both Observation and Model show upward trend of the peak O₃ concentration

☐ This result suggests that changes in meteorological conditions contribute to increase the peak O₃ concentration

4.2 Short-term variation of the peak ozone: Observation analysis

Analysis conditions

☐ Study periods:
August, 2005

■ Methods:

Statistical analysis

Data: Observation

Tokyo	

Variables	Definition
Ozone (O_3)	- Averaged daily maximum O ₃ of monitoring sites in
	Tokyo area
Temperature (T)	
Wind speed (U)	averaged wind speed of monitoring sites in Tokyo area

4.2 Short-term variation of the peak ozone: Observation analysis

□ 70.3% of the short-term variation of the daily maximum ozone depend on temperature and wind speed

4.3 Short-term variation of the peak ozone: Simulation analysis

Analysis conditions

☐ Study periods:

August, 2005

■ Methods:

Statistical analysis and MM5/CMAQ

□ Data: MM5/CMAQ simulation

Variables	Definition
Ozone (O ₃)	- Averaged daily maximum O ₃ of grid points in Tokyo area
Temperature (T) Wind speed (U)	- Averaged daily maximum temperature, and averaged wind speed of grid points in Tokyo area

4.3 Short-term variation of the peak ozone: Simulation analysis

☐ 66.0% of the short-term variation of the daily maximum ozone depend on temperature and wind speed

4.4 Ozone levels – Urban Heat Island: Simulation analysis

□ UHI ~ high temperature, weak wind >> more photochemical production and more O_3 accumulation >> more O_3

14:00 JST, August 4th

5. Conclusions

- \Box There is a close relationship between meteorological conditions and the peak O_3 in summer over the central Kanto area
- \Box Up to 84.1% of the long-term variation of the peak O₃ may be accounted for by changes in T and U, while that is about 70.3% in the short-term variation
- \square UHI has strong effect on O₃ levels.
- ☐ Changes in meteorological conditions may contribute to the rising O₃ levels over the central Kanto area!

Thank you for your attention!

